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Abstract: Coastal water-quality is both a primary driver and also a consequence of coastal ecosystem
health. Turbidity, a measure of dissolved and particulate water-quality matter, is a proxy for water
quality, and varies on daily to interannual periods. Turbidity is influenced by a variety of factors,
including algal particles, colored dissolved organic matter, and suspended sediments. Identifying
which factors drive trends and extreme events in turbidity in an estuary helps environmental
managers and decision makers plan for and mitigate against water-quality issues. Efforts to do
so on large spatial scales have been hampered due to limitations of turbidity data, including coarse
and irregular temporal resolution and poor spatial coverage. We addressed these issues by deriving
a proxy for turbidity using ocean color satellite products for 11 Gulf of Mexico estuaries from 2000 to
2014 on weekly, monthly, seasonal, and annual time-steps. Drivers were identified using Akaike’s
Information Criterion and multiple regressions to model turbidity against precipitation, wind speed,
U and V wind vectors, river discharge, water level, and El Nino Southern Oscillation and North
Atlantic Oscillation climate indices. Turbidity variability was best explained by wind speed across
estuaries for both time-series and extreme turbidity events, although more dynamic patterns were
found between estuaries over various time steps.
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1. Introduction

The quality of estuarine and other coastal waters is a complex function of hydrological,
meteorological, oceanographic, and human drivers [1–4]. The relative influence of these processes
affects water-quality trends, variability, and the occurrence of extreme water-quality events. Identifying
the primary drivers of such events can be useful for management and mitigation purposes. For example,
a state of emergency was declared in two Florida counties in 2016 as a result of thick algal mats
growing along highly populated coastal waterways in the St. Lucie and Caloosahatchee estuaries,
causing massive fish kills [5]. This emergency was caused by the release of nutrient-rich waters
from Lake Okeechobee. A commentary published by Michalak [5] called for targeted research to
determine which environmental conditions, and in what combination, increase the likelihood of
extreme water-quality issues.

Turbidity is an index of water quality used by the U.S. Environmental Protection Agency (EPA)
that measures light transparency in aquatic environments. Turbidity may be modulated by changes in
the concentration of colored dissolved organic matter and suspended particulates including sediment
and phytoplankton, which are affected by changes in hydrological, meteorological, and oceanographic
phenomena [2,6,7].

According to the 2012 EPA National Coastal Condition Report (NCCR), the overall rating of
Gulf coast waters was 2.4 out of 5, or “fair” [8]. Approximately 10% of the coastal waters were rated
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“poor”, and 53% were rated “fair” for water quality index. More specifically, water clarity was rated
poor for 21% of the area. In Tampa Bay, Florida, water quality—measured by turbidity and average
chlorophyll concentration—has improved since the 1970s [4,9]. This is primarily attributed to the
upgrade of wastewater treatment plants to tertiary level starting in 1979. This reduced point-source
pollution to the bay. Greening et al. [10] found that the point and nonpoint sources of nitrogen to
Tampa Bay were 60.3% and 23.9%, respectively, of the total nitrogen loadings in the 1970s. By the 2000s,
the total pollution was reduced by about half, but relative contributions were inverted, with point
sources contributing about 19.5% and nonpoint 57.4% to nitrogen discharges into the bay. Comparing
these results to other Gulf of Mexico (GoM) estuaries is difficult given the lack of robust water quality
monitoring programs, but the NCCR indicate that, since 2000 GoM coastal water quality indices and
their component indicators show no significant linear trend over time in areas rated poor [8]. In order
to continue improving water-quality management in these estuaries, we must better understand the
drivers of nonpoint-source water-quality degradation, and constrain their relative effects on long-term
trends as well as extreme events in the bays. Doing so requires long time-series of water quality
and potential environmental drivers with sufficient spatial and temporal resolution to characterize
variability and enable management actions.

Precipitation within a drainage basin influences water quality through increased nutrient and
sediment discharge into rivers [7,11,12]. Wind also influences water quality through sediment
resuspension in coastal areas [13–15]. Schoen et al. [16] modeled circulation in an estuarine lake
and found that circulation patterns were highly influenced by diurnal wind speed and direction
variability, driving significant intermittent mixing. Dixon et al. [17] studied seasonal colored dissolved
organic matter (CDOM) sources within a North Carolina estuary, and found that water quality was
controlled by wind speed, wind direction, and river discharge.

River discharge increases nutrient and sediment loads to coastal waters, thereby increasing
turbidity with suspended sediments, CDOM, and phytoplankton blooms [18,19]. Dorado et al. [20]
evaluated the effects of freshwater inflow on phytoplankton in Galveston Bay, Texas, and found that
a combination of nutrient loading and hydraulic displacement drove phytoplankton biomass and
community composition throughout the bay.

In addition to wind and freshwater-inflow variability, other forces drive estuarine water quality
by influencing circulation, sediment suspension, and coastal erosion. Over hourly to daily periods,
tidal circulation can impact estuarine phytoplankton and suspended sediment concentrations [21].
Over longer periods, the sea-level cycle of the Gulf coast has changed such that more extreme (i.e., lower
in winter and higher in summer) water levels are now observed [22]. While long-term water level
is not typically investigated for effects on water quality, we include it here to account for apparent
changes in this fundamental element of estuarine composition.

While each of these environmental variables has been shown or hypothesized to influence local
water quality parameters, broader climatic variability may explain long-term patterns in regional
water quality. Scarsbrook et al. [23] studied the effects of El Niño-Southern Oscillation (ENSO)
patterns on New Zealand riverine water quality and found significant relationships between them,
even after accounting for river flow variability. Their results suggested that ENSO significantly
impacted water quality, independent of indirect effects through known precipitation variability caused
by ENSO patterns. Schmidt et al. [24] evaluated the effects of ENSO patterns on precipitation and
river discharge throughout Florida’s watersheds, and found a complex pattern of spatially variable,
seasonal relationships, including statistically significant relationships between extreme ENSO events
and winter precipitation and river discharge patterns in the Tampa Bay area.

The North Atlantic Oscillation (NAO) also drives seasonal wind and precipitation patterns in
the Southeast [25]. The NAO is defined as a meridional alternation of atmospheric mass between the
subtropical and arctic North Atlantic. NAO phases may vary from one year to the next, and are greatest
in amplitude during November to April [26]. Kenyon and Hegerl [27] quantified the impact of the
NAO on global precipitation extremes and found that, while more closely connected with European
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precipitation, statistically significant responses were found in some North American precipitation
stations, including those along the GoM coast.

Turbidity data collected in-situ from individual sampling stations may reflect localized
phenomena. To evaluate bay-wide turbidity patterns, we need time series of synoptic turbidity
observations. For large estuaries spanning several tens of kilometers in length and width, traditional
ocean color satellite imagery can improve spatial and temporal sampling of water quality by providing
data for the entire estuary in a single observation, often at near daily intervals [28]. Chen et al. [21]
employed in-situ sensors and satellite data to determine the mechanisms responsible for observed
variability in phytoplankton and sediment in Tampa Bay over a two-month period. They identified
three strong wind events, which generated critical bottom shear stress and suspended bottom
sediments that were observed in concurrent Moderate Resolution Imaging Spectroradiometer (MODIS)
imagery. They concluded that collecting a single monthly grid of samples with one water sample per
station per month can lead to variability of −50% to 200% of particular samples relative to the monthly
mean of chlorophyll or sediment. Fernandez-Novoa et al. [19] used imagery from MODIS to study
turbidity plumes from the Ebro River over the period 2003–2011. There was sufficient coverage to
isolate specific environmental conditions coinciding with satellite overpasses, including specific river
discharge conditions and wind patterns. With this dataset they were able to identify the direction
and extent of river plume events into the Mediterranean, and concluded that wind direction was the
dominant driver of turbidity magnitude.

Eleven GoM estuaries from Texas to Florida were selected for this study to provide a synoptic
assessment of water-quality drivers throughout the U.S. Gulf coast. These estuaries were chosen,
in part, because the surface area of each (Table 1) is large enough to accommodate the 250 m
spatial resolution of MODIS imagery. Additionally, all of these estuaries are adjacent to large
population centers, and therefore their health and management may impact more stakeholders than
isolated estuaries.

Table 1. National Estuary Programs (NEP) studied here and relevant characteristics.

NEP Surface Water Area
(km2)

Watershed Area
(km2)

Average Depth
(m)

Year
Designated

Barataria/Terrebonne 415/1090 16,500 2.0 1990
Charlotte Harbor 805 12,200 2.4 1995

Coastal Bend Bays 1330 32,580 3.0 1994
Galveston Bay 1550 12,500 2.1 1988

Mobile Bay 1059 113,084 3.0 1995
Sarasota Bay 106 1100 2.0 1988
Tampa Bay 1000 6800 3.6 1990

The objective of this study was to determine the meteorological, oceanographic, and atmospheric
drivers of water quality time-series and extreme events in 11 GoM estuaries between 2000 and 2014
using a satellite-derived proxy for turbidity binned to weekly, monthly, seasonal and annual time
steps. The estuaries studied include: Aransas Bay, Barataria Bay, Charlotte Harbor, Corpus Christi Bay,
Galveston Bay, Matagorda Bay, Mobile Bay, San Antonio Bay, Sarasota Bay, Tampa Bay, and Terrebonne
Bay. The explanatory variables investigated include: Precipitation, wind speed, U and V wind vectors,
river discharge, water level, and ENSO and NAO climate indices.

Study Areas

Each of the 11 estuaries studied here is a designated member of the National Estuary Program
(Figure 1). The NEP is an EPA program created to protect and restore the water quality and ecological
integrity of national estuaries.

Charlotte Harbor (CH), Florida, is a water body of 805 km2 and 2.4 m deep on average that
receives water from a watershed extending over 12,000 km2 of southwestern Florida [29]. Sarasota
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Bay (SB), Florida, lies between Charlotte Harbor to the south and Tampa Bay to the north. It drains the
smallest watershed (1100 km2) of those evaluated in this study, and covers the smallest surface water
area at just over 100 km2 (https://sarasotabay.org/). Tampa Bay (TB), Florida covers over 1000 km2

with an average depth of 3.4 m, and drains a watershed of over 6500 km2 [30]. Six counties and the
cities of Tampa, Clearwater, and Saint Petersburg intersect the watershed, making it the second largest
metropolitan area in Florida.
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Figure 1. Environmental Protection Agency National Estuary Programs of the Gulf of Mexico studied here.

Mobile Bay (MB) is located along the northern Gulf Coast in the state of Alabama. With an inflow
of 1755 m3/s, it receives 20% of the freshwater supply in the US and is the fourth largest estuary in the
country draining a watershed of 113,084 km2 [31].

The Barataria (BTB) and Terrebonne (TBB) estuaries are distinct bodies of water with separate
watersheds, but are managed as a single NEP. They are located between the Mississippi and Atchafalaya
Rivers in southern Louisiana. Freshwater input was effectively cut off by the flood protection levees
erected along the Mississippi River such that rainwater constitutes the primary source of it. These bays
are bounded to the south by barrier islands that are expected to decline in size from 7.3 km2 to 1.6 km2

by 2045 due to erosion, resulting in greater tidal mixing (https://www.lacoast.gov).
Galveston Bay (GB), Texas, is the seventh largest estuary in the country with over 1500 km2

of surface water and the fourth most populous metropolitan area in the country. The estuary has
experienced substantial environmental degradation, losing over 95% of submerged vegetation from
the 1950s to 1970s due in part to poor water clarity caused by increased erosion [32].

The Coastal Bend Bays NEP includes Aransas Bay (ARB) and Corpus Christi Bay (CCB). We also
included the adjacent bodies of San Antonio (SAB), and Matagorda (MGB) Bays to these analyses.
These four water bodies combined cover over 1300 km2 and drain the second largest watershed of
those studied here at 32,580 km2 (Table 1).

https://sarasotabay.org/
https://www.lacoast.gov
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2. Materials and Methods

All preprocessing of independent variables, and statistical analyses were conducted using
MatlabTM and the Fathom toolbox.

2.1. Turbidity Proxy

We used satellite data from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor flown on the Terra satellite to derive a proxy for turbidity. MODIS Terra has provided
a time-series of remote sensing observations at relatively high temporal resolution (near-weekly
or better at the latitudes of Gulf estuaries) and high spatial resolution (250 m to 1 km) since 2000.
Specifically, we generated time-series of water quality indices using remote-sensing reflectance from
MODIS Terra Band 1 (645 nm band center with a spatial resolution of 250-m; band range is 620–670 nm)
as a proxy. The basic assumption is that sediments suspended near the water surface provide a signal
in this red band. In general, we assumed that MODIS Band 1 observations have minimal contributions
from light reflected from the sea bottom in estuarine waters deeper than about 2.8 m due to the strong
absorption of red light by water [21]. This approach has been used several times in the past, with mixed
success, in different estuaries and coastal waters around the world [6,13,14,21,33–39]. Other bio-optical
algorithms that utilize blue, green, or yellow bands to estimate parameters such as chlorophyll-a
concentration are usually contaminated by reflectance from the ocean bottom in shallow areas and
don’t provide accurate estimates.

We derived remote sensing reflectance at 645 nm (Rrs645) starting from MODIS Terra Level-1A files.
Rrs645 represents the normalized water-leaving radiance [40] at 645 nm divided by the extraterrestrial
solar irradiance at 645 nm. MODIS images were downloaded from the NASA Goddard Space Flight
Center Ocean Color data portal (https://oceancolor.gsfc.nasa.gov/). Images were processed using the
SeaWiFS Data Analysis System (SeaDAS) software package, version 7.1. Processing to Level-2 used the
near infrared/short-wave infrared (NIR/SWIR) switching atmospheric correction approach of Wang
and Shi [41]. All data were mapped to an equidistant cylindrical projection with a nominal pixel size
of 262 m. Using the SeaDAS l2gen module, masks were applied for clouds, stray light, and sun glint.
A custom filter file was used to mask stray light using a 1 × 1 pixel filter, as opposed to the default
3 × 3 pixel filter. The cloud mask was applied using data at 2130 nm with a threshold of 0.018 [36].
Individual scenes with high cloud cover (>85%) and sun glint contamination, as indicated in the
data flags, were removed. The total number of images used per estuary varied between estuaries,
and ranged from 3424 to 3958 images. To minimize the effects of negative Rrs645 retrievals, the median
value of all negative Rrs645 values was calculated and applied as a bias to each MODIS scene [36].
Values of this bias ranged from −0.002 sr−1 to zero, and are likely caused by aerosol overestimation.
All remaining negative pixels were excluded from further analyses.

2.2. Meteorological Data

Daily precipitation, wind speed, and wind direction data were downloaded from the NOAA
National Centers for Environmental Information (formerly the National Climate Data Center;
https://www.ncei.noaa.gov/) for the stations listed in Table 2. Stations were selected from all available
stations adjacent to each estuary that contained data for each variable covering the 2000–2014 time
period. Precipitation data were binned to weekly, monthly, seasonal, and annual time steps by
summing the data for each interval. We chose to represent precipitation cumulatively for two reasons:
occasional downpours characteristic of Gulf coast winter frontal systems and summer convective
storms may substantially influence runoff and erosion, but their extreme nature may be muted by
averaging with surrounding days or weeks of little or no rain; and consistent rain over days or weeks
may synergistically impact drainage by reaching a soil saturation point beyond which surface runoff
may increase. Unfortunately, precipitation data from all stations adjacent to the Barataria-Terrebonne
NEP were missing more than 25% of daily observations for this time period, and were therefore
excluded from analyses.

https://oceancolor.gsfc.nasa.gov/
https://www.ncei.noaa.gov/
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Wind data were binned to the same time steps as precipitation, but used an average for each
time step. Coincident wind speed and direction observations were converted to U (east-west) and V
(north-south) component vectors prior to temporal binning.

Table 2. Station locations used for meteorological, river discharge, and water level data for each estuary.

Estuary Meteorological Station River Discharge Water Level Stations

ARB Corpus Christi, TX Mission Rockport, TX
BTB Houma, LA GIWW at Houma Grand Isle, LA
CCB Corpus Christi, TX Nueces Rockport, TX
CH Punta Gorda, FL Myakka and Peace Fort Myers, FL
GB Galveston, TX Trinity Eagle Point, TX
MB Mobile, AL Alabama and Tombigbee Dauphin Island, AL

MGB Corpus Christi, TX Lavaca and Palacios Rockport, TX
SAB Corpus Christi, TX Guadelupe Rockport, TX
SB Sarasota, FL Walker Saint Petersburg, FL
TB Tampa, FL Alafia and Little Manatee Saint Petersburg, FL

TBB Houma, LA GIWW at Houma Port Fourchon, LA

2.3. River Discharge Data

Daily measurements of river discharge were downloaded from the United States Geological
Survey website (https://maps.waterdata.usgs.gov/mapper/index.html?state) for every monitored
river system that entered into each estuary. Rivers that were regulated with known dams or
bypasses, such as Hillsborough River in Tampa Bay, were excluded to eliminate potentially anomalous
anthropogenic influence. That is, management of Hillsborough River discharge is likely to primarily
affect Hillsborough Bay—a subset of Tampa Bay—and therefore not be resolved by the bay-wide
turbidity proxy. When data was available for multiple rivers that discharged into the same estuary,
each dataset of daily discharge measurements was compared with daily Rrs645 measurements to
determine if substantial gaps in discharge data existed (i.e., days for which Rrs645 observations
were made, but not for discharge data). If a discharge dataset was missing more than 25% of daily
observations (i.e., data gaps), that discharge dataset was considered too sparse for evaluation and
excluded from further analyses. If, however, multiple rivers for a given estuary were found to be
sufficient, their data were combined into one discharge dataset for that estuary by summing daily
measurements, and then binning the data to the weekly, monthly, seasonal and annual time steps
by average. Table 2 lists the rivers used for each estuary. For both Barataria and Terrebonne Bays,
water level data from the Gulf Intracoastal Waterway (GIWW) station at Houma, Louisiana, was used.

2.4. Water Level Data

Hourly water-level data were downloaded from the NOAA website (tidesandcurrents.noaa.gov)
for all stations monitored during the time period and located within the estuaries (MLLW datum;
Table 2). Verified water-level data was missing more than 25% of daily observations for the study
period within the Sarasota Bay, Corpus Christi Bay, Matagorda Bay, or San Antonio Bay estuaries.
Data from Tampa Bay was assumed to be a sufficient proxy for Sarasota Bay, as was data from Aransas
Bay for the three adjacent Coastal Bend Bays. Datasets were binned to weekly, monthly, seasonal,
and annual time steps by average.

2.5. NAO Data

Daily NAO index data was downloaded from NOAA (ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
norm.daily.nao.index.b500101.current.ascii) and binned to the same time steps.

https://maps.waterdata.usgs.gov/mapper/index.html?state
tidesandcurrents.noaa.gov
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
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2.6. ENSO Data

Monthly Niño-3.4 index data was downloaded from NOAA (http://www.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt) and binned to seasonal and annual
time steps. As weekly data was not available, the ENSO variable was excluded from weekly analyses.

2.7. Preprocessing

Observations from each dataset for each time step were first matched to the Rrs645 dataset by
identifying coinciding observations. This allowed for a direct comparison of datasets to identify
gaps. If any independent variable for a given estuary matched fewer than 75% of Rrs645 observations,
that variable was eliminated from further analyses. A linear trend was then fit to each dataset and
removed (detrended). Next, climatologies for each time step were computed for each detrended
dataset from the 15-year period of available data. Typically, climatologies are computed using 30-year
time periods, but many of the datasets used for this work, including Rrs645, did not have 30 years of
available data. We chose to restrict climatologies to the 15-year period evaluated here for consistency
between datasets. Anomalies were computed by subtracting the climatology values from the coinciding
time-series observation. Extreme events were identified as those Rrs645 observations within the 90th
and 95th percentiles of each estuary’s dataset. The time-series anomalies, and 90th and 95th percentile
extreme-event anomalies (hereafter “XE90” and “XE95”) were then used for statistical analyses.

2.8. Statistical Analyses

Redundancy Analyses with Akaike’s Information Criterion (RDA AIC) were used first to identify
the independent variables that explained the most variation in the dependent variable. The f_rdaAIC
MatlabTM function from the Fathom toolbox standardized all input independent variables and
determined the ‘best’ independent variables through constrained ordination. This assessed how
much of the variation in one set of variables explained variation in another set, while accounting for
multicollinearity between independent variables [42]. Akaike [43] proposed an information criterion
to quantify the amount of information and statistically determine the number of parameters for
an equation that represents a group of experimental data. The equation with the minimum AIC is
considered the best representation of the experimental data [44]. A null model is created by assigning
a value below which the best equation’s AIC value must be in order to be considered viable to
explain variation in the dependent variable. If no equation explains more variation than a null model,
no independent variable is selected.

For any variable(s) identified as ‘best’ for a given estuary, correlation coefficients were computed
with all other variables using the “corrcoef” Matlab function. If any correlations with ‘best’ variables
exceeded ±0.7, the correlated variables were recorded for consideration.

Multiple regressions were run on the variable(s) identified as ‘best’ by the RDA AIC using
the f_mregress function. One thousand iterations were run for each regression to compute
permutation-based p values because some of the data were not normally distributed. Adjusted-R2

coefficients (R2adj) were recorded, as opposed to R2 coefficients, because the former accounts for the
number of predictors and sample size. Figure 2 summarizes the data on which statistical analyses
were performed.

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
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3. Results

To identify the drivers of turbidity across the coastal GoM, we evaluated the results of statistical
analyses by estuary, time step, and time series or extreme event dataset. The variable(s) identified as
statistically significant drivers of time-series, XE90 and XE95 turbidity for each estuary over all four
time steps are indicated in Table 3 by the number of time steps (0–4) in which they were found to be
significant. Additionally, the number of estuaries (0–11) for which each variable was identified as
a statistically significant driver is summarized in the Table 4 by time step. The results of each individual
iteration, including R2adj, p, sample size, correlations, etc., are reported in Supplemental Materials.

Table 3. The number of time steps (0–4) for which each variable was identified as a significant driver
(R2adj > 0.2, p < 0.05) of turbidity time-series, 90th percentile events (in parentheses), and 95th percentile
events [in brackets] for each estuary. Positive results shaded grey.

Wind Speed U V Precipitation Discharge Water Level NAO ENSO

ARB 1 (0) [0] 1 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0]
BTB 2 (0) [0] 0 (0) [0] 0 (0) [1] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0]
CCB 1 (0) [0] 0 (0) [0] 1 (0) [1] 0 (0) [0] 2 (0) [0] 0 (0) [0] 1 (0) [0] 1 (2) [0]
CH 0 (0) [0] 0 (1) [1] 0 (0) [0] 0 (0) [0] 1 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0]
GB 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0]
MB 3 (1) [0] 2 (0) [0] 0 (1) [0] 1 (0) [0] 4 (0) [0] 1 (0) [0] 0 (0) [0] 0 (1) [0]

MGB 1 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 2 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0]
SAB 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [1] 0 (0) [0] 0 (0) [0]
SB 0 (1) [1] 0 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0]

TBB 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0]
TB 0 (1) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0] 2 (0) [0]

Total 8 (4) [1] 3 (2) [1] 1 (1) [2] 1 (1) [0] 9 (2) [0] 1 (0) [1] 1 (1) [0] 3 (6) [0]

Table 4. The number of estuaries (0–11) for which each variable was identified as a significant driver
(R2adj > 0.2, p < 0.05) of turbidity time-series, 90th percentile events (in parentheses), and 95th percentile
events [in brackets] for each time step. Positive results shaded grey.

Wind Speed U V Precipitation Discharge Water Level NAO ENSO

Weekly 1 (0) [0] 1 (0) [0] 0 (0) [1] 1 (0) [0] 1 (0) [0] 0 (0) [0] 0 (0) [0] 0 (0) [0]
Monthly 2 (2) [1] 0 (2) [1] 0 (1) [1] 0 (1) [0] 1 (0) [0] 1 (0) [1] 0 (1) [0] 1 (2) [0]
Seasonal 3 (2) [0] 0 (0) [0] 1 (0) [0] 0 (0) [0] 4 (2) [0] 0 (0) [0] 0 (0) [0] 1 (4) [0]
Annual 2 (0) [0] 2 (0) [0] 0 (0) [0] 0 (0) [0] 3 (0) [0] 0 (0) [0] 1 (0) [0] 1 (0) [0]
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Analyses of time series data identified statistically significant relationships (p < 0.05) between
turbidity and at least one independent variable for all time steps (i.e., weekly, monthly, seasonal,
and annual) in all estuaries, with the exception of nine iterations. That is, no variables were identified
as “best” by the AIC step in four runs, and only five runs identified at least one “best” variable,
but the resulting model could not explain turbidity variation significantly. Excluding those results,
the variables most often found to explain turbidity variation were wind speed (25 iterations) and
discharge (15 iterations). If we exclude those statistically significant relationships that found R2adj
values under 0.2, the variables found to most frequently explain turbidity variation were discharge
(9 times; Figure 3) and wind speed (8 times; Table 3). Discharge data was found to contain too many
gaps to be sufficient for weekly or monthly analyses in Galveston Bay. In addition, water level was
excluded from Terrebonne Bay weekly and monthly analyses for the same reason.
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Analyses of 90th percentile extreme events (XE90) found statistically significant relationships
between turbidity and at least one independent variable in 20 of the 44 analyses. None of the annual
analyses identified a “best” variable, probably due to low sample sizes. For all analyses that identified
a significant variable, wind speed (7 times; Figure 4) was identified the most, followed by ENSO
(6 times), and discharge (3 times). Excluding significant relationships with R2adj values under 0.2,
the variables found to most frequently explain turbidity variation were ENSO (6 times), and wind
speed (4 times; Table 3). Discharge and water level were excluded from Galveston Bay and Terrebonne
Bay, respectively, due to insufficient data.
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Analyses of 95th percentile extreme events (XE95) found statistically significant relationships
between turbidity and at least one independent variable in 7 of the 44 runs. None of the seasonal or
annual runs identified a “best” variable, probably due to low sample sizes. For all runs that identified
a significant variable, the V vector (3 times), and U vector (2 times) were identified most. Excluding
significant relationships with R2adj values under 0.2, the variable found to most frequently explain
turbidity variation was the V vector (2 times; Table 3; Figure 5). Discharge and water level were
excluded from Galveston Bay and Terrebonne Bay, respectively, due to insufficient data.
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4. Discussion

We will refer to variables that were identified as statistically significantly (p < 0.05) correlated
to the Rrs645 turbidity proxy with R2adj values greater than 0.2 as “significant drivers” of turbidity.
Because RDA AIC and multiple regression analyses may identify more than one variable per iteration,
we will discuss the results by noting both the number of estuaries for which an independent variable
was identified as a driver, and the number of times a variable was identified as a driver.

For time-series datasets, wind speed and discharge were each found to be a significant driver of
turbidity in more estuaries than any other variable (wind: 5 estuaries; discharge: 4 estuaries). These two
variables alone were found to be significantly correlated with turbidity in six of the 11 estuaries.
The direction of the relationship between these two variables and turbidity was consistent for wind
speed (i.e., positive relationship in all 8 time-series iterations), but not for discharge (i.e., four positive
relationships in Mobile Bay, and five negative relationships among three estuaries.). This suggests
that increased wind speed consistently increases turbidity, but that discharge has a more dynamic
relationship that varies among estuaries and possibly with other factors. Correlation tests found that
only the CCB annual time series iteration showed a high correlation (0.734) with a significant driver
(discharge). Galveston Bay, San Antonio Bay, Sarasota Bay, and Terrebonne Bay turbidity time-series
were not significantly driven by any variable.

For extreme-event datasets, ENSO was found to be a significant driver of turbidity in more
estuaries than any other variable (5 estuaries), followed by wind speed (4 estuaries). However,
the direction of the relationships was inconsistent: 3 estuaries (ARB, CCB, SB) displayed negative
turbidity responses to ENSO variability while 2 estuaries (BTB, MB) were positive. Only one of
the models that identified ENSO as a significant driver included an additional variable in the
model: Mobile Bay seasonal turbidity was best explained by a combination of wind speed (81%)
and ENSO (18%). Correlation tests found that only the CCB monthly XE95 iteration showed a high
correlation (0.755) with a significant driver (V vector). Closer evaluation of significant results by
plotting extreme turbidity events against the ENSO index revealed a consistent pattern whereby
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extreme turbidity observations coincided with both positive and negative ENSO index observations.
Given the binary (i.e., El Nino vs. La Nina) atmospheric responses to ENSO patterns, these results
are likely not physically valid, but rather reflect a statistical artefact. Therefore, wind speed may be
considered the most consistent driver of extreme event turbidity across these estuaries.

Analyses of weekly time-series datasets found that significant drivers of turbidity could only
be identified for Mobile Bay. Here, turbidity was driven by four variables (wind speed, U vector,
precipitation, and discharge). Monthly time-series analyses revealed significant drivers in only two
estuaries: Mobile Bay (wind speed, discharge, and water level) and Corpus Christi Bay (wind speed
and ENSO). Seasonal analyses of time-series datasets found significant drivers in seven estuaries,
explained most frequently by discharge (4 times) and wind speed (3 times). Annual analyses of
time-series datasets found significant drivers in six estuaries, explained most frequently by discharge
(3 times), followed by wind speed and the U vector (2 times each).

Weekly extreme-event analyses found that no estuaries had a significant turbidity driver of XE90

data. However, weekly XE95 data for three estuaries (Barataria Bay, Charlotte Harbor, and Matagorda
Bay) were driven by the wind vector variables (V twice, and U once). Monthly analyses of XE90 (XE95)
data found significant drivers in eight (four) estuaries, explained twice (once) each by wind speed,
U vector, and ENSO (wind speed, U, V, water level). Monthly analyses of XE95 data found significant
drivers in four estuaries, explained once each by wind speed, U, V, and water level. Seasonal XE95

sample sizes were too small to detect any significant relationships, but seasonal XE90 analyses revealed
significant drivers in seven estuaries with ENSO (4 times) driving turbidity more than any other
variable, followed by wind speed and discharge (twice each).

Our results corroborate similar findings in these and other adjacent estuaries. Joshi et al. [39],
for example, found that turbidity in Apalachicola Bay, Florida, (located approximately 300 km from
Mobile Bay to the west and Tampa Bay to the southeast) is largely driven by a combination of river
discharge, wind speed, tides and precipitation, and that the interactions of these physical forcings
affect different sections of the bay in dynamic ways. We found that Mobile Bay turbidity is driven
by a combination of river discharge, wind speed, water level and precipitation, and that the three
Florida estuaries (TB, CH, SB) are driven by wind speed and discharge. Chen et al. [21] also showed
that strong wind events in Tampa Bay resulted in suspended sediments that remained suspended for
several days. Joshi et al. [45] also studied Barataria-Terrebonne Bay and found that seasonal strong
wind significantly increased CDOM in part of the bay, similar to our finding that both time-series and
extreme-event turbidity here are driven by wind speed. Further, our results indicating that Coastal
Bend Bays’ turbidity is driven in part by river discharge corroborates similar results by Paudel [46]
that indicate that freshwater inflow is correlated with variability of suspended solids and nutrients in
those estuaries.

Evaluating the results by time step reveals that turbidity time-series variability across the GoM
can be more frequently explained by these independent variables for seasonal and annual steps
(7 estuaries and 6 estuaries, respectively) than weekly and monthly variability (1 and 2 estuaries,
respectively). Similarly, extreme-event variability can be more frequently explained on monthly and
seasonal periods (7 estuaries each for XE90; 4 estuaries for monthly XE95), than on weekly scales (none
for XE90; once for XE95; note that XE95 seasonal, and both XE annual data sample sizes were too
small for analyses). This may indicate that short-term turbidity responses lag behind environmental
phenomena. Schmidt et al. [24] found that river discharge in Florida watersheds lagged an ENSO
index by several months, depending on season.

Lagged relationships between independent variables and turbidity were not included in this
study. We decided that lag estimates could not be constrained well enough for all estuaries at all
time-scales to facilitate accurate comparisons, but that the identification and evaluation of lagged
effects of these variables on turbidity is a possible area of valuable future research for these estuaries.
Further, Eleveld et al. [2] compared satellite-derived water quality products with modelled water
quality and found that sun-synchronous satellites alias tidal patterns and are also biased by acquiring
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usable data under cloud-free conditions. These constraints led to biases in satellite-derived water
quality products [2], and may have limited our ability to resolve water quality in this study. Further,
Zheng et al. [47] reviewed satellite-derived ocean color products and concluded that, while coastal
turbidity proxies tend to be relatively accurate in the 2-7 NTU range, they also tend to lose sensitivity
beyond 7 NTU depending largely on colored dissolved organic matter concentration and atmospheric
correction techniques. This relatively narrow range of turbidity values that tend to be accurately
identified by satellite data may explain the paucity of significant relationships and prevalence of
low R2adj values for many of these analyses, especially regarding extreme events (i.e., high-turbidity
observations). Moreover, recent research by Sokoletsky et al. [48], Yang et al. [49], and Hamidi et al. [38]
have demonstrated improved estimates of turbidity and total suspended sediment using refined
turbidity algorithms that we intend to evaluate in future research. Nonetheless, the consistent
identification of wind speed as the driver of turbidity variability across estuaries in agreement with past
work leads us to believe that our product is sufficient to identify broad patterns in water-quality drivers.

We were able to synoptically assess environmental drivers of water-quality variation in all GoM
National Estuary Programs over multiple time steps (weekly, monthly, seasonal, and annual data bins),
including extreme events (90th and 95th percentile observations) and identify statistically significant
drivers for some estuaries. In doing so, we spatially and temporally scaled up what are typically
short-term, local evaluations of water-quality variability to identify drivers across the basin.

5. Conclusions

Fifteen years of satellite-derived turbidity data for 11 GoM estuaries revealed statistically
significant relationships with several environmental variables. Wind speed was found to be the most
consistent driver of turbidity time-series and extreme-event variability across estuaries. River discharge
was also found to drive turbidity variability, increasing turbidity in Mobile Bay, but decreasing it in
three other estuaries (Corpus Christi Bay, Charlotte Harbor, and Matagorda Bay).

The explanatory variables investigated here were found to have stronger statistical relationships
with turbidity when the data were binned over longer time steps (i.e., monthly to annual). This may be
due to lags, which were not evaluated here and should be considered for future work, or may indicate
that the turbidity proxy used contained a low signal-to-noise ratio for weekly binned data. Longer
bins averaged more data points, which may have improved the accuracy of the monthly, seasonal,
and annual products over weekly data.

While these results find a consistent relationship between high winds and increased turbidity,
they also reveal varied dynamics between turbidity and environmental phenomena between estuaries.
Muller-Karger et al. [50] found substantial changes in GoM wind speed from the 1980s to 2012.
As climate change modulates future patterns in wind, precipitation, discharge, sea level, and climate
oscillations, local water-quality managers should consider the dynamics of their local estuarine
water-quality responses to environmental forcings to prepare for future water-quality trends and
extreme events.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/2/255/s1,
Table S1: Time series weekly results, Table S2: Time series monthly results, Table S3: Time series seasonal
results (bold MB row is plotted in Figure 3), Table S4: Time series annual results, Table S5: XE90 weekly results,
Table S6: XE90 monthly results, Table S7: XE90 seasonal results (bold TB row is plotted in Figure 4), Table S8: XE95
weekly results (bold BTB row is plotted in Figure 5), Table S9: XE95 monthly results.
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